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Bayes' Theorem And The Use Of Prior Knowledge In

Regression Analysis

George C. Tiao and Arnold Zellner

I. INTRODUCTION

The use of Bayes' theorem in statistical inference has recently

been reconsidered in the works of Jeffreys (1957, 1961), Savage (1959,

1961, 1962), Raiffa and Schlaifer (1962), Box and Tiao (1962, 1963) and

others. Emerging from these works are what we consider to be at least

two distinct advantages of the Bayesian approach. First, this approach

provides an excellent framework for the systematic and logical assessment

of the adequacy of the assumptions which are used in many statistical

models. Examples which illustrate this use of the approach may be found

in the works of Box and Tiao in which the effects of certain departures

from normality are assessed in making inferences about location and scale

parameters. Second, given that a model is adequate, the Bayesian approach

is one in which prior knowledge about parameters of interest can be

combined in a well-defined mathematical way with information obtained

from an experiment. Such prior knowledge, which may arise from general

theoretical considerations and/or the results of previous or concurrent

experiments, is usually an important component of an investigator's quest

for understanding. In this paper we illustrate how prior knowledge can

be utilized in conjunction with sample information in making inferences

about the parameters of the regression model, a model which is used

extensively in many areas of research.

The plan of the paper is as follows. In Section 2, we review

several Bayesian analyses of the regression model which have appeared in

the literature and go on to develop two additional models which we believe



2.

have desirable features not found in other models. Some technical results

needed to implement the models in practice are presented in Section 3.

Then in Section 4 we apply our methods in the analysis of investment

data relating to two large corporations. Finally, in Section 5 we

provide a summary.

II. BAYESIAN ANALYSIS OF THE REGRESSION MODEL

2.1 Specification of the Model

We employ the Bayesian approach to make inferences about a

1 2regression coefficient vector p' = (1 , 1 .. ., P). This vector

of coefficients appears in the usual regression model as follows:

(2.1) y = X0 + C

where y is a Txl vector of observations, X is a Txp matrix of fixed

elements with rank p, and e is a Txl vector of random disturbances. We

assume that the elements of e are normally and independently distributed,

2
each with mean zero and unknown variance a . Under these assumptions our

joint likelihood function is:

(2.2) ly a)T exp (/2a 2)y - X0)'(y - Xp)3.

For simplicity in notation we shall use the symbol Q(p, n, A) throughout

this paper to denote a quadratic form in variables p centered at n and

with matrix A, namely

Q(P, n, A) - (1 - r)' A (0 - q).

In this notation, the likelihood function can be written:

(2.3) 2(p, aly)= yexp 2
ex 2 }2a2
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where Z =X'A, =" Xy, v =T-p and s 1(Y - ^).(Y-

Using Bayes' theorem, the likelihood function in (2. 3) is combined with a

prior distribution p(pq ) of the parameters 1. and a to yield a joint posterior

distribution p(p, a Iy) for these parameters, that is

(2.4) P(,a 'Y) =Kp(ra) i(, lY)

where K =fp(I, ) I(p, Iy) dp d.
R

From the joint posterior distribution of P and a, we can then derive marginal

and conditional posterior distributions for a and for particular elements of 3.

Clearly the form of our posterior distribution will depend on the kind of prior

information which we have available and the way in which we represent It.

In what follows, we consider several formulations which have appeared in the

literature and then go on to present and analyze two models which we have

developed.

2.2 Locally Uniform Prior Distributions

In problems involving estimation of location and scale parameters, it has

been argued in several previous works--Jeffreys (1961), Savage (1961), Box and

Tiao (1962)-- that, in many practical situations, it is appropriate to use Bayes'

theorem with the assumption that the location parameters and the logarithm of

the scale parameters are independent and have locally uniform prior distributions.

By a locally uniform prior distribution we mean a distribution function which is

practically uniform over the region in which the likelihood function assumes

appreciable values, and at no other point is it of sufficiently great magnitude as

to become appreciable when multiplied by the likelihood. When such prior

distributions are employed, the posterior distribution of the location parameters and

the logarithm of the scale parameters is closely approximated by the likelihood
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parameters and w is a scale parameter, we have then:

(2.5a) p (1) (% k 1

(2.5b) p(log a) c k2  or p(a) cc

Substituting (2.3) and (2.5) in (2.4), the joint posterior

distribution of 0 and a is:

(2.6) p(3, aly) = const. a-(T+1) exp - 1 2 ,

This posterior distribution can be written as

p(3, aly) = p(aly) p(O3a, y)

where

(2.7) p(aly) = const. a- (T'P+l) exp 's

and

(2.8) p(P3a, y) = const. a p exp 2 Q(3, 0, Z)
S2a2

We see that (2.7) is in the form of an "inverted" gamma distribution and

(2.8) is a multivariate normal distribution with mean 0 and covariance

2 -1I
matrix a Z

When a is unknown, the marginal posterior distribution of 0 is

obtained by integrating the joint posterior density function over a, that is,

(2.9) p(Ojy) =p(0B, oly) do

= const. 1 + Q(P, f3, Z) } 2
V!2

i . ij ii ,JJBy taking ti= (0 -i) I s(zi) and r z ij(z z ,we obtain

I Zr ijt t V+
(2.10) p(t) const. f + i J J 2

which is a multivariate t distribution, a result derived by Savage (1961)

using the Bayesian approach. It can easily be shown that the marginal



posterior distribution of a subset of the elements of 3 is also in the

same form as in (2.9) and can therefore be transformed into a multivariate

t distribution. In addition, the marginal distribution of the quantity

ti is simply a univariAte t distribution with T-p degrees of freedom.

We note that these results can also be derived from Fisher's

fiducial theory. Further, from the sampling theory point of view, the

statistics 0 and s are regarded as random variables. The distribution

in (2.10) is then precisely the joint distribution of the quantities
^i -i ii

t 1 2 (0 0 ) I s(z )i, i :1, 2, ..., p, as shown by Cornish (1954)

and by Dunnet and Sobel (1954). There is, of course, nothing new in the

above. We record these results as an introduction to the more general

models which we present below.

2.3 Normal-Ganma Representation of Prior Distributions

In situations where some prior information about the parameter

is available, we can take as our joint prior distribution for 3 and a

certain scale parameter 01:

(2.11) p(p, d1) p(a) P(OIo)

where 2

(2.12) p(al) - const. a I"I exp {,-2 }
and 1

(2.13) po1a1 ) - const. a exp { 01 PJZ

2The quantities v1 , 19 and the elements of and Z are all known constants;

the matrix Z1 is assumed to be non-negative definite. The prior distribution

*The reasons for introducing a will be made clear in the
following discussion where various modhs are considered.



6.

in (2.11) is called a "normal-gamma" distribution by Raiffa and Schlaifer

(1961) and is seen to be in the same form as the posterior distribution

of p and a in (2.6). It can be used, for instance, when experiments

are conducted sequentially and the posterior distribution of the parameter(s)

of previous experiments are taken as the prior distribution for the

current experiment. Suppose the likelihood function of our previous

experiments takes the form:

(2.14) 1(p, ally1 ) = (0 1 4i) -T1 exp (1/2 a2)(yl-Xl3)'(yl-X1) .

Then, upon making similar assumptions about the prior distributions for

and a1 as discussed in Section 2.2, and by setting

Z1= X Xl, -= Z 1
1XlY, V1  Tl-p and s2 = 1( X11)'(y x )

1 11 V (y X113)

we find that the posterior distribution of P and a1 is precisely that

given in (2.11).

In taking p(p, a1) in (2.11) as the prior distribution to be

combined with the likelihood function in (2.2), we immediately see that

the exact form of the posterior distribution of 1 will depend upon our

knowledge about the relationship between the scale parameter a which

appears in (2.2) and the new scale parameter a1 introduced in (2.11).

In what follows we distinguish three different situations: (i) aI is

functionally related to a; (ii) a1 is known to take some fixed value

010 and is independent of a; and (iii) a1 is unknown and independent

of 0.
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2.4 Situation Where a .and ,c are Functionally Related

Raiffa and Schlaifer (1961) have considered the case in which O'1

is proportional to a with a known factor of proportionality, that is,

a1 - ka with the value of k fixed. Since k is known, there is no loss

in generality to assume that k = 1 so that a1 = a. This assumption is

appropriate, for example, in situations in which experiments are conducted

sequentially under well controlled conditions which insure constancy of

the variances of random disturbances in all experiments. The prior

distribution of p and a1 in (2.11), which can be regarded as the posterior

distribution of these parameters arising from previous experiments, then

provides a priori information for both the parameters p and the scale

parameter a. When this prior distribution is employed in conjunction with

the likelihood function in (2.2), the joint posterior distribution of

and a is given by:

(2.15) p(3, 0y) = p(Cly) p(Pla, y)

where r s2 +V82

p(ajy) = const. a(V1+T+l) exp -1 - -2 1 1

L 2a2

P(1a, Y) = const. a'P exp 
{-1 Q( , 1, Z2)}

Z2a 'Z)

z2 = Z + Z  and Z2  (ZO +z 1 0).

On integrating out a from (2.15), we obtain the posterior distribution of 1,
A(, , z ,) -i (V-,p)

(2.16) p(Oly) 
= const. 

2) +f

-2 1 2 2.
with v-V 1 + T and s = 8(vI s1 +v.

This distribution is in the same form as that given in (2.9) and can be

transformed into a multivariate t distribution as indicated above.
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2.5 Situation in Which a1 is Known

In many circumstances, as Theil (1962) has pointed out, the

assumption that a1 and a are functionally related is inappropriate. For

instance, in econometric analysis it is frequently the case that theoretical

considerations may lead the investigator to impose certain, perhaps

imprecise, a priori restrictions on the value of p. The conditional

prior distribution of p in (2.13) for some assigned value of a1 say

a1 = , ay be utilized as a mathematical representation of these

a priori restrictions with the assigned a10 measuring, in some sense,

the investigator's uncertainty about them. Since a1 is now regarded as

a measure of subjective feelings, whereas a in the likelihood function is

a measure of experimental error, there is little reason for supposing

that they are functionally related. Thus, assigning the value v10 to o 1

provides us with no information about a. We may then follow the analysis

in Section 2.2 and take log a to be locally uniformly distributed

a priori. With these assumptions, the posterior distribution of is:

Vp

1, +1 }{ Q(O3 . Z)J
(2.17) P(Oy) = k- exp 2 Q(01 Y 2

where V+P

k exp - -- Q(3, 3, Z1  Q 2 Z) dp3.
=J~~~l -2 2VR 1

This posterior distribution is seen to be in the form of the product of a

multivariate normal distribution and a multivariate t distribution.

Hereafter, we shall denote a distribution of this type as a multivariate

"normal-t" distribution. We note that, when v tends to infinity, the

+ B, a, Z) V " V+p
expression { + 2 T tends to:

In addition to assigning a value to a , it is of course necessary
to assign values to 5 and the matrix z in (2.13).
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V+P

C Q(O'P, ,Z)' 2 Q f
(2.18) lim 2 + 2 exp 2S2  Z)

Thus, in the limit, we have for the posterior distribution of p in (2.17),

(2.19) lir P(jY) = C exp

(2n)2
1* 1 - 2 1 P 1

with C -Z 1 - Z and =C Z +-
1 s1

Z
which is a multivariate normal distribution with mean p and covariance

matrix C 1. For finite values of v, the normalizing constant k in (2.17)

is a p-dimensional integral which cannot be expressed in terms of simple

functions. Nevertheless, it can be approximated using methods similar to

those described in Section 3.

Before leaving this section, we shall make a few remarks about the

work of Theil (1962) and Theil and Goldberger (1960) in connection with

the use of prior knowledge in regression analysis. Theil and Goldberger

are primarily interested in utilizing prior information about p in

conjunction with a sample to provide a point estimate of 0 which in-

corporates both prior and sample information. In their treatment, the

regression model is specified as that given in (2.1) except for the normality

assumption, that is

y = X03 + E

with E(e)= 0 and E(Ce') = Ia 2 .

The prior information about p can be put in the form:

(2.20) Y1 
= XI p + e1

where the elements of e, are independently distributed, each with zero

2 2
mean and known variance al1 . Further,c 1 is assumed to be functionally
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2
independent of a2. From the sampling theory point of view, they show

that, when 12 is known the statistic

(2.21) 13 (-1 X'X + 1 il, (j X'y + ..L Xjy1)12= 2

a a 1a al
2

is the minimum variance linear unbiased estimator. In case a is not known,

2 th2apevaine o
Theil substitutes s2 the sample variance, for a in (2.21) and proceeds

to show that the resulting statistic 0, given by

1 1 -1 1 X +1
(2.22) (- (XOX + iXX) (-X' +-Xy1s 21  s 1

v -1
differs from 0 by a quantity which is of order T in probability.

It may be of interest to observe the parallelism of the above

results and those from the Bayesian formulation we have considered. When

a normality assumption is added, the likelihood function corresponding to

(2.20) is proportional to the expression given in (2.14). For the case

2
a known, it can readily be shown that the posterior distribution of 0

is multivariate normal with mean given by the expression in (2.21). In
2

the case where a is not known, the expression in (2.22) is precisely

the limiting mean for the multivariate "normal-t" distribution as v tends

to infinity (see equation (2.19)]. This result is, of course, to be

expected since, except for the normality assumption about the disturbances,

all other underlying assumptions are very much the same in both approaches.

2.6 Aituation in Which a is Regarded as a Variable Parameter

and Independent of a'

We have considered two models above, one in which it is assumed

that a1 = ka with k known, and the other in which a is independent of a

but takes on a fixed value a 0" As a generalization of the second model,

we now consider a and aI to be independent variable parameters.



This formulation will be applicable, for example, in the following

situation. Suppose that the results of two sets of experiments are

utilized to make inferences about 0 and that the associated likelihood

functions are given by I(p, a1ly) in (2.14) and A(p, aly) in (2.2),

respectively. Suppose further that these two sets of experiments are

carried out under quite different conditions so that there is no basis for

assuming any relationship between aI and a. Follcwing the

discussion in section 2. 3 , it seems appropriate to take the normal-gamma

distribution p(3, a1) in (2.11) as the posterior distribution associated

with the first set of experiments (see discussion in Section 2.3). This

distribution can then be regarded as representing prior information about

0 and a1 for the analysis of the second set. Since a and a are independent,

information about 1 represented by the marginal distribution p(a1) in

(2.12) contributes nothing to the investigator's knowledge about a. Thus,

all that is of interest in p(p, a1) is the information concerning 0.

This is, of course, represented by the marginal distribution p(p), namely

(2.23) P(W3) 0p(), al do 1
0

V1 +P

= const. {l + Q(1' , Z1 ) " 2
v 2 JVI s l

Using (2.23) as the prior distribution of 1 and upon making the

same assumption about the prior distribution of a as in Section 2.2, the

posterior distribution of 1 is readily found to be:
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( 1  " Q( ', 0 Z ) - -(p A z " -

1' 2{1 Q(O, 0,Z)}
(2.24) p(o3ly) k 1 1 + Vs2S2

with
V l+ P V(+ P3 )v . A ~

k ff + Q01 1 jl 2 1 .Q(010.Z) 2 do .
R sI s2 vs 2

R ~11
This distribution is in the form of the product of two quantities each of

which can be transformed into a multivariate t distribution. Hereafter we

shall denote a distribution of this kind as a multivariate "double-t"

distribution. As in the case of a multivariate "normal-t" distribution,

the normalizing constant k in (2.24) is a p-dimensional integral. This

may lead to certain practical difficulties in the numerical evaluation of

the posterior distribution, particularly when p is large. Similar

difficulties will also be encountered if one is interested in making

inferences about a subset of the elements of 0, since in this case it

does not appear possible to express the corresponding marginal posterior

distribution of the subset of interest in terms of simple functions. In

the following section, we develop a method by which both the posterior

distribution in (2.24) and the marginal distributions of elements of

can be approximated.

We note that when the vector p has only one element (p 1) and

the elements of the corresponding (Txl) matrix X in (2.2) and (TIxl)

matrix X in (2.14) have the same value, unity, the posterior distribution

in (2.24) takes the following form:
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(V "+1 (Pi 2vx (0 2  V+1

(2.25) p(oly) = I + 2 1 + 2  }
1 I s aI  VsT

where k 1 - (v+l)(+ 1 212 - do

-, 1 1

2 2
and the quantities 1. y , s 1 and s are respectively, the sample means and

sample variances for the two sets of experiments. This result corresponds

a
to the problem of making inferences about.population mean when samples are

drawn from two normal populations with common mean and unequal variances.

It is of interest to note that the distribution given in (2.25) is exactly

the same as that obtained by Fisher (1961a, 1961b) from the fiducial

theory point of view. He proceeded to expand this distribution in an

asymptotic series in powers of vI and v, from which probability integrals

of 0 can be approximated. We may remark here that our development in

Section 3 closely parallels Fisher's procedure.

It is easy to see that the analysis in this section can be

immediately generalized to cover situations in which several sets of

experiments are conducted sequentially (or concurrently) but under quite

different conditions. Suppose that the likelihood function for the ith

set of experiments can be represented by:

(2.26) J~o rilyd)=( j*T exp { 1(j)y~j~)~jX~)
f- 2ai

where i = 1, 2, ..., K say. Then, by taking the cas as independent scale

parameters we obtain the following posterior distribution of 0:
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(225 1+)(Pi 2' V+1
(22) P(OIy) 1 I1'{ + (V1+)6y } {( V s 2 2-p

1 1

2 2

and the quniie 1 si and s are respectively, the sample means and

sample variances for the two sets of experiments. This result corresponds
a

to the problem of making inferences about. population mean when samples are

drawn from two normal popuilations with coummon mean and unequal variances.

It is of interest to note that the distribution given in (2.25) is exactly

the same as that obtained by Fisher (1961a, 1961b) from the fiducial

theory point of view. He proceeded to expand this distribution in an

asymptotic series in powers of v1and v, from which probability integrals

of w can be approximated. le may remark here that our development in

Section 3 closely parallels Fisher's procedure.

It is easy to see that the analysis in this section can be

imediately generalized to cover situations in which several sets of

experiments are conducted sequentially Cor concurrently) but under quite

different conditions. Suppose that the likelihood function for the i th

set of experiments can be represented by:

ai
where i = 1, 2, ... , K say. Then, by taking the i.'s as independent scale

- 2 2.

parameters we obtain the following posterior distribution of 0:
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(2.27) P(pIY) " a) K1 1 + Q(, 2
vs i

with 4 p

=f~' {l + 2~p 2, do)~
R i i

V T- p Zi = XX i

-12 1
1  " Xiyi  and 2 - (yi X  i) '(YiXloi)"

This distribution is seen to be the product of K quantities each of which

can be expressed as a multivariate t distribution. It may, therefore, be

denoted as a multivariate "multiple-t" distribution and can be approximated

numerically using methods similar to those described in the next section.

III. ASYMPTOTIC EXPRESSION FOR THE MULTIVARIATE "DOUBLE-t" POSTERIOR
DISTRIBUTION

3.1 The Joint Posterior Distribution

In the preceding section, we have shown that, when a 1 and a are

regarded as independent variable parameters, the corresponding posterior

distribution of 0 is in the form of the product of two multivariate t

distributions. [See (2.24).] The normalizing constant is a p-dimensional

integral which is in general difficult to evaluate even on a fast computer,

especially when p is large. Nevertheless, we now show that, by expanding

the posterior distribution into an asymptotic series in powersof v 1 and-1
V1 , we can reduce the problem of integration to a problem of evaluating

the mixed moments of two quadratic forms. The same procedure is then

applied in the next section to obtain an asymptotic expression for the

marginal posterior distributions of elements of 1.
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Since s2 and s2 in (2.24) are known quantities, they can be

suppressed by setting

M =- i Z and B = Z.
2 1 82sI  s

We can then write (2.24) as:

1") Q(00 0, B) T
(3.1) p(Iy) =  { + Q( V + V L _I

with V+P

kQ + 0, _)__1+ ______B 2 do

Rc f {1 + V} 1 ~ 3 o
R

^ V+p

The expression + Q( B) 2- can be written:

+ Q Bexp QjQ(0,0, B)) . exp {iQ(P,^, B)-

T og~ Q(P, , B)2 log [I + ]V

Expanding the second factor on the right in powers of vi, we obtain:

4'p
(3.2) + -, B)exp AQ(0, , B)} io

where p f 1

'I [ Q2
p1 = L 4 00 B) - 2pQ(,0 B)]

P2 = [ 3Q (0, , B) - 4(3p+4) Q (0, 0, B) + 12p (p+2) Q (O,O,B)]

Similarly, we have that
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(3.3) 1+ QU3. P3. 2)..L = exp, ~ ,M}-V 1 QO' 5 M)Ti~o qi V1

where

o=1

q= [Q2 (f3,,M) - 2p Q(p343,M))
4

q [ 3Q 0r,,M) - 4(3p+4) Q (03,j,M) + 12p (p+2) Q 0,M,)]

Substituting (3.2) and (3.3) into (3.1) and after a little reduction, we

can express the posterior distribution as:

- -iI -j(3.4) p (p Iy) - p/ exp{. D)3 P, q p V V 1(2 )P2'iojo

where D =B +M, =D- (Bf3 + o)

and

SJDJ
(3.5) W = J 2rp - einJ-i Q(P' , D)M o .Z pi q v 'V 1 do

The integral W in (3.5) can be integrated term by term. From

(3.2) and (3.3), we see that each term is, in fact, a bivariate polynomial

in the mixed moments of the quadratic forms Q(f3, 0, B) and Q($3, i, M)

where the variables 03 have a multivariate normal distribution with mean

and covariance matrix D *1 For this problem, it appears much simpler to

obtain the mixed moments indirectly by first finding the mixed cumiulants.

It is straightforward to verify that the joint cumulant generating

function of Q(f3, 3, M) and Q(p3 p3, B) is
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(3.6) iE(t1, t 2) 0 logi f / exI, 1 QDOB

R (2Xr)

- I

-og i - 2D- 1 (t B + t
2 M )  + t1 ,{ B  1 t2 T1 2

+ 2(t1 B n + t2 H 2 ) ' (D - 2t1 B - 2t2 M)
1

(t 1 B Tj + t2 H 12)

where "11l " and 0"

Upon differentiating (3.6) and after some algebraic reduction, we find:

(see Appendix)

(3.7) KiO = tr. D"1 B + nl' B q]

tr. D" r M + q M q2

K = 2 r + s - (r+s-2)! {(r+s-l) tr. D"I Gr s + (rql + S12 ) ' Gre (rll+ sq2:

- rjj Grs' %- sq Gr + r+ > 2

where Grs = D(D"I B)r (D'I M)s.

Employing the bivariate moment-cumulant inversion formulae as

given by Cook (1951), the integral in (3.5) can be written as

m . -i
(3.8) W = io JZ bij v 1

where b = 1
00

b [K+ K2 1 - 2p Koll
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b 2 2 2

1= 1 22 K20 0 2 + 11 10 O0 2lK20l + 2Di i0
2 2

IC2 0 01 + K02K 0" 2p (i12 + K + JCO 2e0 + K2 0 k0 1 + 2KlK 1 0

b 2 +2 4 4(3po)20 - 96 £3(K 4 0+ t  
-

4 (3p+4)

(K30 + 3 c 010+ K3 0 ) + 12p(p+2)(. 2 0 + K2 0 )]
0 2 2 4

b0 2 =96 3( 0 4+ 3K0 2 + 4 0 3 K0 1+ 6 0 2 0 1+ 01)

- 4(3p+4)( + 3K02 01 ) + 12p(p+2)(Kc0 + K02 1 )]

Substituting the results in (3.8) into (3.4),we obtain the following

asymptotic expression for the posterior distribution of 3:

IDIi ri M -i V-
(3.9) p(Ply) =(2)p/2 exp Q(3, ,D) f-o j-o dij v lI

where d = 100

d10 = Pi "b 1 0

d ol =q" b01

d = (p 1 -b 1 0 )(q 1 -b 0 1 ) + b10 b0 1 -b 1 1

20 P2 20 Pl 10 10

d 0 2 q2  b0 2  q, b +b2
2 =2 02 01 01

Expressions for additional terms d1 2 , d2 1, d2 2 , etc. can similarly be

found if desired.

The posterior distribution is thus expressed in the form of a

multivariate normal distribution multiplied by a power series in vand v-1.
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When both v and v tend to infinity, all terms of the power series except

the leading one vanish so that, in the limit, the posterior distribution

1*
is multivariate normal with mean 3 and covariance matrix D * For

finite values of v and v,, the terms in the power series can be regarded

as "corrections" in a normal approximation to the multivariate "double-t"

distribution. From (3.2), (3.3) and (3.7), we see that numerical

evaluation of the coefficients in the power series involves merely matrix

inversions and multiplications, operations which are easily performed on

an electronic computer.

We note that when the posterior distribution is a univariate

distribution as in (2.25), the results in (3.9) are in exact agreement with

those obtained by Fisher (1961b) in a similar treatment of the problem

(see discussion in Section 2.6). In Fisher's derivation, each term of

the integral W in (3.5) was expressed in terms of the moments of a univariate

normal distribution. It can therefore be evaluated directly without making

use of the mixed-cumulant formulae given in (3.7) which seem more convenient

for the multivariate case considered here.

For the univariate case, posterior pr abilities can be calculated

using the formulae given in Fisher's paper cited above. When p > 1,

numerical evaluation of joint probabilities becomes exceedingly cumbersome.

Nevertheless, using the expression (3.9) the density function can be

calculated conveniently. When p a 2, the joint distribution contours can

of course be plotted, giving the investigator a complete summary of the

information about 0. This will be illustrated by an example in Section 4.

It should be obvious that if one of the v and Y tends to infinity
while the other remains finite, the multivariate "double-t" posterior
distribution tends to the multivariate "normal-t" form. Our above
development can easily be modified to yield an asymptotic expression
for the latter distribution.
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3.2 The Marninal Posterior Distribution

When interest centers on a subset of the elementsof p, say

1 . (al l ....9P I), an asymptotic expression for the corresponding

marginal posterior distribution can be obtained by integrating out the

AC+l
remaining elements, 02 = + ., P) from the joint distribution in

(3.9). We have that

(3.10) p(o11y) 77 J exp - (Q, , D) J- Z o d0 d i V 1  do2
(21) Re

Denoting 6 f 102) and partitioning the matrices D and D into:

A p-1 A p-A

2 2 -t V 21 V - p-X

we can write the marginal posterior distribution as:

(3.11) p(o~y expI 9 { O -y - )I Wily(2n)1/2 1

where

1D21

(3.12) f( 1 1Y) (2 P-A2 f ex i d

with CL D 2 1  (0 1

From the expressions for dij given in (3.9), we see that each term in

the integral f(o1 y) is a bivariate polynomial in the quadratic forms
A

Q(3, p, B) and Q(O, 0, M) where A, is considered fixed and 02 has a

multivariate normal distribution with mean a and covariance matrix D2 .

Adopting the same procedure as that described in the preceding section,

and by setting
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1. 1:2' 1:

ApA p-A

.B11. B I'- E E
B = . .12. B .!ll. .12.

B21 B22 pA9, 21 E22 1P2

M m1 AN-
M = . .. 12. ' 1 l2.. p-A, N * -

I-M2 1 : M2 2  p8'N21 N22 -

We obtain, for the mixed cumulants of Q(O, p, B) and Q(p, 1, M):
^ -1

(3.13) B tr. B + 7 B22 71 +Q(51' z E 11)a 0 =  tr. D1 22

=tr. D2 2 M22+ 7 M22 72 + (1 ) N11)

Ws = 2 r+s- (r+s-2)! (r+s-1) tr. D2 1

(5 7 1 + s '2)' Hrs (r 71 + s2 2 ) - r271 71
s Hrs

s72 H 2 r + s> 2

where

Hrs D -1 r -I M2s
22(D 2 2 B2 2) (D2 2  22

1 2 +B 22 B2 1  " - 1)
-1

72 - M2+M 22 M21 (01 - 01)

Using the resultsin (3.13), we can express the marginal posterior

distribution of 01 as:

vii-j
(3.14) p(131 ¥y) exp V) Z v v

(2 1)/2 1 ( i=0o J=o iJ 1
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where
80 = 1
500

510 , 810 - b1 0

50l = 801 - b01
8 11 = 811 - b 1 g o1 bo01 " 801 b 10 + 2 bo01 b 10

-b b + b b2
20 " g20 - " g10 b10 +1

2

802 ' 902 " " g01 b0 1 + 1

and the quantities g i are functions of the mixed cumulants wj with the

functional relationships exactly the same as those between bij and KiJ

shown in (3.8).

It will be noted that when Bl consists of only one variable

(I = 1), the quantities 5j in (3.14) are simply polynomials in that

variable. Employing the well known expression for the moments of a normal

variable, one can easily derive an asymptotic expression for the moments

of 01" In addition, probability integrals can also be approximated using

methods given in Fisher's previously cited paper (1961b).
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IV. AN ILLUSTRATIVE EXAMPLE

To illustrate application of the techniques developed in Sections

2 and 3, we analyze a very simple econometric investment model with annual

time series data, 1935-1954, relating to two large corporations, General

Electric and Westinghouse. In this model, price deflated gross investment

is assumed to be a linear function of expected profitability and beginning

of year real capital stock. Following Grunfeld (1958), the value of

outstanding shares at the beginning of the year is taken as a measure of

a firm's expected profitability. The two investment relations are:

Y1 (t) = al + 0 1x11(t) + O2x 12(t) + 61(t)
(4.1)

y2(t) = M2 + .1x21(t) + 02x22(t) + C2(t)

where t in parentheses denotes the value of a variable in year t,

t = 1, 2, ..., 20, and

General
Variable Electric Westinghouse

Annual real gross investment yl(t) y2(t)

Value of shares at beginning of year x11(t) x21(t)

Real capital stock at beginning x12(t) x22(t)
of year

Error term el(t) e2(t )

The parameters p, and P2 in (4.1) are taken to be the same for the two

firms; however, m l and m2 are assumed to be different to allow for certain

possible differences in the investment behavior of the two firms. Further,

61(t ) and e2(t) are assumed to be independently and normally distributed

*The data are taken from Boot and deWitt (1960).
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for all 't with zero means and variances a and a , respectively. Since

we have no information from which to posit a relationship connecting

2 2
a and a , we take them to be independent parameters and pursue the

development described in Section 2.6.

In the present instance we can regard either General Electric's.or

Westinghouse's data as beinC generated "first" and derive a joint posterior

distribution of the relevant parameters. This can then serve to represent

prior information in the analysis of the second set of data. Or, with

locally uniform prior distributions for the parameters in both equations,

one can analyze both sets of data at the same time. In both cases the

joint
final result is the sameposterior distribution for 1l a,2' l and 02

which is in the form of the product of two multivariate t distributions.

On integrating out L1 and m2' the coefficients A, and 02 will be jointly

distributed in a bivariate "double t" form. (See equation (2.24).]

Numerical values for quantities appearing in (2.24) and (3.9) are shown

below:

General Electric Westinghouse

1 =  0.02655 = 0.05289

2= 0.1517 02 W 0.09241

s2 = 777.4463 s2 = 104.3079
~1
v = 17 v a 17

M 4Z185.1054 299.67487 1B_-9010.5368 1871.107971

299.6748 1535.0640 1871.1079 706.3320-1

5 - (.0373, .1446)

If one is interested in the parameters Gl and m2' it should be
obvious that, a posteriori, they are distributed in the form of two inde-
pendent t variables. In particular, the difference, a, - m 2' has the
Behrens-Fisher distribution.
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A plot of the contours of the joint density surface is shown in

Figure 1 along with lines showing the loci of conditional modes. These

contours sunmarize all the relevant information about the coefficients

01 and 02" We see that the posterior distribution is concentrated rather

sharply in the region .0278 < O1 < .0468 and .1216 < 02 < .1676, with mode

at about (.0373, .1446). Further, 01 and p2 are seen to be negatively

correlated and the contours are approximately elliptical. The latter is

the case because the joint density function is close to its limiting

bivariate normal distribution. This arises from the fact that in this

example both v1 and v arc rather large.

When interest centers on only one of the parameters, say 01,

the expression in (3.14) can be employed to calculate the corresponding

marginal distribution. For this example we evaluated (3.14) disregarding

terms for which i + j > 2. The results are shown by the solid curve in

Figure 2. The broken curve in the same figure represents the limiting

normal density function with mean 51 = .0373 and variance v =11  9.01445 x 10.5 "

It will be noted that the posterior distribution of 0, is somewhat flatter

at the center and fatter in the tails than its limiting distribution.

Also, it is slightly skewed. The mean and variance of the distribution

of 0I were computed from (3.14) neglecting terms for which i + J > 1.

The calculation yielded the following results:

Limiting Normal Finite Sample Corrections Finite Sample Mean
Distribution 510 5 01 and Variance of 01

(1) (2) (3) (1) + (2) + (3)

Mean = .0373 -.000229 .000191 Mean = .03726

-5 -5 -5
Variance = 9.01445 x 10 .5985 x 10' .0028 x 10"  Variance - 9.6158 x 10 -

The mean of p, is extremely close to its asymptotic value. On the other hand,

the variance of Ol is about 6 percent larger than that of the limiting

distribution.
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V. SUMMARY

In this paper, we have adopted a Bayesian approach to the problem

of integrating prior information into the analysis of the normal regression

model. Initially, we reviewed Jeffrey's and Savage's analysis wherein

prior knowledge (or lack of substantial prior knowledge) about the

regression coefficient 0 and the logarithm of the scale parameter a is

represented by locally uniform distributions. We then turned to consider

a normal-gamma representation of prior information about p and an additional

scale parameter a V Here we discussed three possible assumptions about

the two scale parameters, namely, (i) a 1 = 
Ka with known value of K --

the Raiffa and Schlaifer case; (ii) aI fixed and functionally independent

of a; and (iii) both a and a unknown and assumed independent a priori.

With assumption (ii), we were able to provide a reinterpretation

of the 'mixed" estimation procedure of Theil and Goldberger. It was

shown that the posterior distribution of 0 takes the form of a product of

multivariate normal and multivariate t distributions.

Under the third assumption, we obtained what may be regarded as

a generalization of Fisher's work on the problem of making inferences when

samples are drawn from two normal populations with common mean and unequal

variances. In this case, it was shown that the posterior distribution of

0 is in the form of the product of two multivariate t distributions. For

computational purposes, the distribution was expanded in an asymptotic

series which involved finding the mixed cumulants of pairs of quadratic

forms in normal variables. A bivariate example was analyzed in detail.



27

Appendix

In Section 3.1, we have stated that the joint cumulant generating

function of the quadratic forms Q(O, 3, M) and Q(3, AO, B) is given by

(A.1) K(t 1 , t 2 ) = - I log lI-2D I(t 1 B+t 2M)I + t 1 B11l + t2MT2

-l
+ 2(t1 Bq 1 + t2Mj2)' (D-2tB-2t2M) (t1 Bql + t2Mn2).

We now derive the expressions for the mixed cumulants shown in (3.7). In

our development, we shall make use of the following lemma the proof of

which can be found, for example, in Box (1954).

Lemma-, Let P be a nxn positive definite symmetric matrix and Q be a nxn

nonnegative definite symmetric matrix. Then, for sufficiently small L,

we have

rr
log I-LPQI r l -  tr. (PQ)

Employing the above lemma and for sufficiently small values of t1 and t2, we

can expand the first term on the right of (A.1) into:
-l ~ ~ 2r-il l

(A.2) - log 1I-2D 1(t B+t2 M) r=l rE tr. (tlD 1B+t2D 1M)r

The quadratic form t14Bql can be written:

(A.3) t1TIB~1 = tIIB(D-2t B-2t2M)'I (D-2tlB-2t2M) T1

-l1 2 2 1l

=tl lB(D-2t B-2t 2M)' Di1  2t 2IqB(D-2t B-2t2 M) 
" Bn

1

- 2t1t2r7,B(D-2tIB-2t 2M) MTI1 .

Similarly,

(A.4) t214M 2 f t2TIM(D-2t B-2t2M)' Dr2 - 2t 2  M(D-2t B-2t2 M) M 2

- 2t1t2T-B(D-2t1 B-2t2M)'. Mq2 -
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Thus, the expression in (A.1) becomes

-. 1 B2t D2 1 ) 1

(A.5) -(t1  t 2 ) =rKi 2-- tr. (t1D 2B+t 2D-M) + t I B(I-2tlD 1 B-2t 2D' M)

+ t 2r 2M(I-2tD B-2t2D M) 12

- 2t 1 t 2 (nl - n2 )'B(I-2t D 1B-2t 2 D 1M ) I D-1M( I-12
)

Since D = B + M, it is easy to see that the matrix BD M is symmetric.

In virtue of this property, we have

-= -1 r r i r-i - ( -I r-i

(A.6) (t D B + t2 D 'M)
r = o ( ) (D B) (D M)

and, for sufficiently small values of t1 and t2,

(A.7) (I-2t D'B - 2t D M)'- = oz 2  t " (DB) (D •M)
1 2 i= =oM1 2

Substituting (A.6) and (A.7) into (A.5) and after a little rearrangement,

we find,

(A.8) K(t I  t 2 ) i + 2  tr tr. (DlIB)r + lD(D- B)r2 r I I

40 r = 2 r - l r -I 1 M r21 M
+;2 t2  tr. (D + njD(D H)

r=l 2 r- ( 1 ) 2 -1

+r r+s-l r s (r+s-2) r -Irs

tz 2 r-s' (r+s-l) tr. DG
rl s rs I r -s I

+ (rTj +S2 )IG -(rl s2) -rnG T2G1 r } 2

where

crs D( 1  r -l
G D(D B) (D M)

Upon differentiating (A.8), we obtain
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(A.9) I 2r 1 (-1)! {tr. (D-IB)r + rqlD(D IB)r TI }
fA.9) Ko =23

(A. D0) Io 2+ sD(1

(A.11) Krs 2r+s-1 (r+s-2)! {(r+s-1) tr. D-1Grs + (rnl+.r'2 )'GrS(rTIl+sr 2 )

- rhlG rs., ,'dra.2 r, s> 1

which can then be combined into the expressions given in (3.7). '. note

that Box (1960) has derived expressions (A.9) and (A.JO) di'c 2.y from

the individual cumulant generating function of Q(p, 3, B) and tlat of

Q( , 3, M), respectively.
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